
Week 2
The 80x86 Microprocessor Architecture

OBJECTIVES
this chapter enables the student to:

• Describe the Intel family of microprocessors from 8085 to
Pentium®.
– In terms of bus size, physical memory & special features.

• Explain the function of the EU (execution unit) and BIU (bus
interface unit).

• Describe pipelining and how it enables the CPU
to work faster.

• List the registers of the 8086.
• Code simple MOV and ADD instructions.

– Describe the effect of these instructions on their
operands.

OBJECTIVES
this chapter enables the student to:

• State the purpose of the code segment,data segment,stack
segment, and extra segment.

• Explain the difference between a logical address and a
physical address.

• Describe the "little endian" storage convention
of x86 microprocessors.

• State the purpose of the stack.
• Explain the function of PUSH and POP instructions.
• List the bits of the flag register and briefly state the purpose

of each bit.

(cont)

4

Brief History of the 80x86 Family

• Evolution from 8080/8085 to 8086
– In 1987, Intel introduced a 16-bit microprocessor called the 8086
– It was a major improvement over the previous generation 8080/8085

microprocessors
• 1 Mbyte memory (20 address lines) vs 8080/8085’s capability of 64 Kbytes
• 8080/8085 was an 8 bit system, meaning that the data larger than 8 bits should be

broken into 8-bit pieces to be processed by the CPU; in contrast 8086 is a 16 bit
microprocessor

• 8086 is pipelined vs nonpipelined 8080/8085; in a system with pipelining the data and
address busses are busy transferring data while the CPU is processing information

• Evolution from 8086 to 8088
– 8086 is a microprocessor with a 16-bit data bus internally and externally
– Internally all registers are 16 bits wide
– External the data bus is16 bits to transfer data in and out of the CPU
– There was a resistance in using the 16 bit external data bus since at that time

peripherals were designed around 8-bit microprocessors
– Intel then came out with the 8088 version with 8-bit data bus

5

Brief History - Continued
• Success of 8088

– IBM picked up the 8088 as their microprocessor of choice in designing the IBM PC
– All specification of the hardware and software of the PC are made public by IBM and

Microsoft (in contrast with Apple computers)
• Intel introduced 80286 in 1982

– 16 bit internal and external data buses
– 24 address lines (16 Mbyte main memory)
– Virtual memory: a way of fooling the microprocessor into thinking that it has access

to almost unlimited amount of memory by swapping data between disk storage and
RAM

– Real mode vs protected mode with 80286
• Intel unveiled the 80386 (sometimes called the 80386DX) in 1985; internally and externally

a 32 bit microprocessor with a 32 bit address bus (4 Gbyte physical memory)
– Numeric data processing chips were made available: 8087, 80287, 80387 etc.

• On the 80486, in 1989, Intel put a greatly enhanced 80386 & math coprocessor on a single
chip.

– Plus additional features such as cache memory.
• Cache memory is static RAM with a very fast access time.

• All programs written for the 8088/86 will run on 286, 386, and 486 computers.

6

The 80286 and above - Modes of Operation

•Protected Mode
–Difference is in the new addressing mechanism and protection levels
–Each memory segment may range from a single byte to 4GB
–The addresses stored in the segment registers are now interpreted as pointers into a
descriptor table
–Each segment’s entry in this table is eight bytes long and identifies the base address of the
segment, the segment size, and access rights
–In 8088/8086 any program can access the core of the OS hence crash the system. Access
Rights are added in descriptor tables.

•Real Mode (We will use this in our course)

•The address space is limited to 1MB using address lines A0-19;
the high address lines are inactive

•The segmented memory addressing mechanism of the 8086 is retained with each segment
limited to 64KB

•Two new features are available to the programmer

–Access to the 32 bit registers

–Addition of two new segments F and G

Brey 59

7

Virtual Memory
• 286 onward supported Virtual Memory Management and Protection
• Unlimited amount of main memory assumed
• Two methods are used:

– Segmentation
– Paging

• Both techniques involve swapping blocks of user memory with hard disk space as
necessary

– If the program needs to access a block of memory that is indicated to be stored in the
disk, the OS searches for an available memory block (typically using a least recently
used algorithm) and swaps that block with the desired data on the hard drive

– Memory swapping is invisible to the user
– Segmentation: the block size is variable ranging up to 4GB
– Paging: Block sizes are always 4 KB at a time.

• A final protected mode feature is the ability to assign a privilege level to individual
tasks (programs). Tasks of lower privilege level cannot access programs or data
with a higher privilege level. The OS can run multiple programs each protected
from each other.

Mazidi 648

8

Memory Map of a PC

Conventional
memory

Upper memory
block

The 640 K Barrier:
DOS was designed to run on the
original IBM PC - 8088
microprocessor - with 1Mbytes of
main memory

IBM divided this 1Mb address space
into specific blocks
• 640 K of RAM (user RAM)
• 384 K reserved for ROM functions

(control programs for the video
system, hard drive controller, and
the basic input/output system)

9

Read Mode vs. Virtual 8086 Mode
• Real Mode (repeat of previous definition)

– Only one program can be run one time
– All of the protection and memory management functions are turned off
– Memory space is limited to 1MB

• Virtual 8086 Mode
– The processor hands each real mode program its own 1MB chunk of memory
– Multiple 8086 programs to be run simultaneously but protected from each

other (multiple MSDOS prompts)
– Due to time sharing, the response becomes much slower as each new

program is launched
– The processor can be operated in Protected Mode and Virtual 8086 mode at

the same time.
– Because each 8086 task is assigned the lowest privilege level, access to

programs or data in other segments is not allowed thus protecting each task.
– We’ll be using the virtual 8086 mode in the lab experiments on PCs that do

have either Pentiums processors or 486s etc.

10

The 8086 and 8088
• The 8086 microprocessor represents the foundation upon which all the

80x86 family of processors have been built
• Intel has made the commitment that as new generations of

microprocessors are developed, each will maintain software compatibility
with this first generation part.

– For example, a program designed to run on an Intel 386 microprocessor, which
also runs on a Pentium, is upward compatible.

• Intel implemented pipelining in 8088/86 by splitting the internal
structure of the into two sections:

• The execution unit (EU) and the bus interface unit (BIU).
– These two sections work simultaneously.

• Processor model
– BIU (Bus Interface Unit) provides hardware functions including generation of

the memory and I/O addresses for the transfer of data between itself and the
outside world

– EU (Execution Unit) receives program instruction codes and data from the BIU
executes these instructions and stores the results in the general registers.

– EU has no connection to the system buses; it receives and outputs all its data
through the BIU.

11

Execution and Bus Interface Units

12

Fetch and Execute Cycle
• Fetch and execute cycles overlap

– BIU outputs the contents of the IP onto the address
bus

– Register IP is incremented by one or more than one
for the next instruction fetch

– Once inside the BIU, the instruction is passed to
the queue; this queue is a first-in-first-out register
sometimes likened to a pipeline

– Assuming that the queue is initially empty the EU
immediately draws this instruction from the queue
and begins execution

– While the EU is executing this instruction, the BIU
proceeds to fetch a new instruction.

• BIU will fill the queue with several new instructions
before the EU is ready to draw its next instruction

– The cycle continues with the BIU filling the queue
with instructions and the EU fetching and
executing these instructions

13

Pipelined Architecture

• Three conditions that will cause the EU to enter a wait mode
– when the instruction requires access to a memory location not in the

queue
– when the instruction to be executed is a jump instruction; the

instruction queue should be flushed out (known as branch penalty too
much jumping around reduces the efficiency of the program)

– during the execution of slow instructions
• for example the instruction AAM (ASCII Adjust for Multiplication) requires

83 clock cycles to complete for an 8086

8088/86 pipelining

– The idea of pipelining in its simplest form is to allow the CPU to fetch and
execute at the same time.

– 8088/86 pipelining has two stages, fetch & execute. In more powerful
computers, it can have many stages.

Figure 1-2 Pipelined vs Nonpipelined Execution

15

Pipelined Architecture

• The BIU accesses memory and peripherals, while the EU executes
instructions previously fetched.

– This works only if the BIU keeps ahead of the EU, so
the BIU of the 8088/86 has a buffer, or queue

• The buffer is 4 bytes long in 8088 and 6 bytes in 8086.

• 8086 vs 8088
– BIU data bus width 8 bits for 8088, BIU data bus width 16 bits for 8086
– 8088 instruction queue is four bytes instead of six
– 8088 is found to be 30% slower than 8086

• WHY
– Long instructions provide more time for the BIU to fill the queue

16

Nonpipelined vs pipelined architecture

Fetch Execute FetchFetch ExecuteExecute

Time

BIU
F F F F F F

Wait E E E Er

Er: a request for data not in the queue

Read
Data

Wait E E Ej

FdFdFd

Ej: jump instruction occurs Fd: Discarded

EU

FF

Wait E

Non-pipelined architecturea

Pipelined architecture

INSIDE THE 8088/86 pipelining
• Three conditions for failure!

– If an instruction takes too long to execute, the queue is filled to
capacity and the buses will sit idle AAM (ASCII Adjust for
Multiplication) requires 83 clock cycles to complete for an 8086

– In some circumstances, the microprocessor must flush out the
queue.

• When a jump instruction is executed, the BIU starts to fetch information
from the new location in memory and information fetched previously is
discarded.

• The EU must wait until the BIU fetches the new instruction
– In computer science terminology, a branch penalty.

• In a pipelined CPU, too much jumping around reduces
the efficiency of a program.

• when the instruction requires access to a memory location not in the
queue

18

Registers of the 8086/80286 by Category
Category Bits Register Names

General 16 AX,BX,CX,DX

8 AH,AL,BH,BL,CH,CL,DH,DL

Pointer 16 SP (Stack Pointer), Base Pointer (BP)

Index 16 SI (Source Index), DI (Destination Index)

Segment 16 CS(Code Segment)
DS (Data Segment)
SS (Stack Segment)
ES (Extra Segment)

Instruction 16 IP (Instruction Pointer)

Flag 16 FR (Flag Register)

19

General Purpose Registers

• Data Registers are normally used for storing temporary results
that will be acted upon by subsequent instructions
• Each of the registers is 16 bits wide (AX, BX, CX, DX)
• General purpose registers can be accessed as either 16 or 8 bits
e.g., AH: upper half of AX, AL: lower half of AX

AX (Accumulator)

AH AL

BX (Base Register)

BH BL

CX (Used as a counter)

CH CL

DX (Used to point to data in I/O operations)

DH DL

15 8 7 0H(HIGH) L(LOW)

20

Data Registers

Register Operations

AX Word multiply, word divide, word I/O

AL Byte multiply, byte divide, byte I/O, decimal arithmetic

AH Byte multiply, byte divide

BX Store address information

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect I/O

21

Pointer and Index Registers

The registers in this group are all 16 bits wide
Low and high bytes are not accessible
These registers are used as memory pointers

• Example: MOV AH, [SI]
Move the byte stored in memory location
whose address is contained in register SI to register AH

IP is not under direct control of the programmer

SP Stack Pointer

BP Base Pointer

SI Source Index

DI Destination Index

IP Instruction Pointer

22

Computer Programming
• Machine Language vs Assembly Language

– Machine language or object code is the only code a computer can execute but
it is nearly impossible for a human to work with

– E4 27 88 C3 E4 27 00 D8 E6 30 F4 the object code for adding two numbers
input from the keyboard

• When programming a microprocessor, programmers often use assembly
language

– This involves 3-5 letter abbreviations for the instruction codes (mnemonics)
rather than the binary or hex object codes

Source code

23

Edit, Assemble, Test, and Debug Cycle
• Using an editor, the source code of the program is created.

This means selecting the appropriate instruction
mnemonics to accomplish the task

• A compiler program which examines the source code file
generated by the editor and determines the object code
for each instruction in the program, is then run. In
assembly language programming, this is called an
assembler (MASM (Chapter 2 of the textbook, DEBUG:
Appendix A of the textbook, etc.,)

• The object code produced by the computer is loaded into
the target computer’s memory and is then run.

• Debugging: locating and fixing the source of error
• High-level programming Languages

– Basic, Pascal, C, C++

assembly language programming

• An Assembly language program consists of a series of lines of
Assembly language instructions.

• An Assembly language instruction consists of a mnemonic,
optionally followed by one or two operands.
– Operands are the data items being manipulated.
– Mnemonics are commands to the CPU, telling it

what to do with those items.
• Two widely used instructions are move & add.

MOV instruction

• The MOV instruction copies data from one location to another, using this
format:

• This instruction tells the CPU to move (in reality, copy)
the source operand to the destination operand.
– For example, the instruction "MOV DX,CX" copies the contents

of register CX to register DX.
– After this instruction is executed, register DX will have

the same value as register CX.

26

MOV Instruction

• MOV destination,source
– 8 bit moves

• MOV CL,55h
• MOV DL,CL
• MOV BH,CL
• Etc.

– 16 bit moves
• MOV CX,468Fh
• MOV AX,CX
• MOV BP,DI
• Etc.

MOV instruction
• This program first loads CL with value 55H, then moves this value

around to various registers inside the CPU.

MOV instruction

• The use of 16-bit registers is shown here:

29

MOV Instruction

• Data can be moved among all registers but data cannot be moved
directly into the segment registers (CS,DS,ES,SS).

– To load as such, first load a value into a non-segment register and then move it
to the segment register

MOV AX,2345h
MOV DS,AX

• Moving a value that is too large into a register will cause an error

MOV BL,7F2h ; illegal !
MOV AX,2FE456h ; illegal !

• If a value less than than FFh is moved into a 16 bit register. The rest of
the bits are assumed to be all zeros.

MOV BX,5 ; BX = 0005 with BH = 00 and BL = 05

30

MOV Instruction

• MOV AX,58FCH
• MOV DX,6678H
• MOV SI,924BH
• MOV BP,2459H
• MOV DS,2341H
• MOV CX,8876H
• MOV CS,3F47H
• MOV BH,99H



x








x


31

ADD Instruction

• ADD destination,source
• The ADD instruction tells the CPU to add the source and destination

operands and put out the results in the destination

MOV AL,25H
MOV BL,34h
ADD AL,BL ; (AL should read 59h once the instruction is executed)

MOV DH,25H
ADD DH,34h ; (AL should read 59h once the instruction is executed)

Immediate operand

DESTINATION = DESTINATION + SOURCE

ADD instruction

• The ADD instruction has the following format:

• ADD tells the CPU to add the source & destination
operands and put the result in the destination.
– To add two numbers such as 25H and 34H, each can

be moved to a register, then added together:

– Executing the program above results in:
AL = 59H (25H + 34H = 59H) and BL = 34H.

• The contents of BL do not change.

ADD instruction
• Is it necessary to move both data items into registers before adding them

together?
– No, it is not necessary.

– In the case above, while one register contained one value, the
second value followed the instruction as
an operand.

• This is called an immediate operand.

ADD instruction

• An 8-bit register can hold numbers up to FFH.
– For numbers larger than FFH (255 decimal), a 16-bit register such as AX, BX,

CX, or DX must be used.

• The following program can add 34EH & 6A5H:

– Running the program gives DX = 9F3H.
• (34E + 6A5 = 9F3) and AX = 34E.

ADD instruction
• Any 16-bit nonsegment registers could have been used to

perform the action above:

– The general-purpose registers are typically used in arithmetic
operations

• Register AX is sometimes referred to as the accumulator.

36

Origin and Definition of a Segment

• A segment is an area of memory that includes up to 64 Kbytes
and begins on an address divisible by 16 (such an address
ends with an hex digit 0h or 0000b)
– 8085 could address 64Kbytes 16 address lines

• In the 8085, 64 K is for code, data, and stack
• In the 8086/88, 64 K is assigned to each category

– Code segment
– Data segment
– Stack Segment
– Extra Segment

37

Advantages of Segmented Memory

• One program can work on several different sets of data. This is
done by reloading register DS to a new value.

• Programs that reference logical addresses can be loaded and
run anywhere in the memory: relocatable

• Segmented memory introduces extra complexity in both
hardware in that memory addresses require two registers.

• They also require complexity in software in that programs are
limited to the segment size

• Programs greater than 64 KB can be run on 8086 but the
software needed is more complex as it must switch to a new
segment.

• Protection among segments is provided (when available).

38

Segment Registers

logical address and physical address

• In literature concerning 8086, there are three types of
addresses mentioned frequently:
– The physical address - the 20-bit address actually on the

address pins of the 8086 processor, decoded by the
memory interfacing circuitry.

• This address can have a range of 00000H to FFFFFH.
• An actual physical location in RAM or ROM within the 1

mb memory range.
– The offset address - a location in a 64K-byte segment

range, which can can range from 0000H to FFFFH.
– The logical address - which consists of a segment value

and an offset address.

40

Logical and Physical Addresses
• Addresses within a segment can range from address 0 to address FFFFh.

This corresponds to the 64Kbyte length of the segment called an offset
• An address within a segment is called the logical address
• Ex. Logical address 0005h in the code segment actually corresponds to

B3FF0h + 5 = B3FF5h.

OFFSET VALUE

15 0

SEGMENT REGISTER 0h
0519

ADDER

20 BIT PHYSICAL ADDRESS

Example 1:
Segment base value: 1234h
Offset: 0022h

12340h
0022h

12362h is the physical 20 bit address

Two different logical addresses may
correspond to the same physical
address.
D470h in ES 2D90h in SS
ES:D470h SS:2D90h

+

41

•If DS=7FA2H and the offset is 438EH
a) Calculate the physical address

FFFF

Example

b) calculate the lower range

c) Calculate the upper range of the data segment

d) Show the logical Address

7FA2:438E

7FA20 + 438E = 83DAE

83DAE

7FA20 + FFFF = 8FA1F

8FA1F

7FA20 + 0000 = 7FA20

7FA20

mazidi

42

Example
Question:

Assume DS=578C. To access a Data in 67F66 what should we do?

578C0

678BF

DS=578C capability

67F66

change
DS

To any value
between

57F7h - 67F6h

43

Another Example

• What would be the offset required to map to physical address
location 002C3H if the contents of the corresponding segment
register is 002AH?

• Solution: the offset value can be obtained by shifting the
contents of the segment register left by four bit positions and
then subtracting from the physical address. Shifting gives:
002A0H

Now subtracting, we get the value of the offset:
002C3H-002A0H=0023H

44

Code Segment

• To execute a program, the 8086 fetches the instructions
(opcodes and operands) from the code segment

• The logical address is in the form CS:IP

• Example: If CS = 24F6h and IP = 634Ah, show
• The logical address
• The offset address
and calculate
• The physical address
• The lower range
• The upper range

code segment

• To execute a program, 8086 fetches the instructions (opcodes
and operands) from the code segment.
– The logical address of an instruction always consists of a

CS (code segment) and an IP (instruction pointer), shown
in CS:IP format.

– The physical address for the location of the instruction
is generated by shifting the CS left one hex digit, then
adding it to the IP.

• IP contains the offset address.
• The resulting 20-bit address is called the physical address

since it is put on the external physical address bus pins.

code segment
• Assume values in CS & IP as shown in the diagram:

– The offset address contained in IP, is 95F3H.
– The logical address is CS:IP, or 2500:95F3H.
– The physical address will be 25000 + 95F3 = 2E5F3H

code segment
• Calculate the physical address of an instruction:

– The microprocessor will retrieve the instruction from memory
locations starting at 2E5F3.

code segment

– Since IP can have a minimum value of 0000H and a maximum
of FFFFH, the logical address range in this example is
2500:0000 to 2500:FFFF.

• Calculate the physical address of an instruction:

– This means that the lowest memory location of the code
segment above will be 25000H (25000 + 0000) and the highest
memory location will be 34FFFH (25000 + FFFF).

code segment
• Calculate the physical address of an instruction:

code segment

• What happens if the desired instructions are located beyond these two
limits?

– The value of CS must be changed to access those instructions.

code segment logical/physical address

• In the next code segment, CS and IP hold the logical address of the
instructions to be executed.
– The following Assembly language instructions have been

assembled (translated into machine code) and stored in
memory.

– The three columns show the logical address of CS:IP, the
machine code stored at that address, and the corresponding
Assembly language code.

– The physical address is put on the address bus by the CPU to be
decoded by the memory circuitry.

code segment logical/physical address

Instruction "MOV AL,57" has a machine code of B057.
B0 is the opcode and 57 is the operand.

53

Logical Address vs Physical Address in the CS

CS:IP Machine
Language

Mnemonics

1132:0100 B057 MOV AL,57h
1132:0102 B686 MOV DH,86h
1132:0104 B272 MOV DL,72h
1132:0106 89D1 MOV CX,DX
1132:0108 88C7 MOV BH,AL
1132:010A B39F MOV BL,9F
1132:010C B420 MOV AH,20h
1132:010E 01D0 ADD AX,DX
1132:0110 01D9 ADD CX,BX
1132:0112 05351F ADD AX, 1F35h

• Show how the code resides physically in the memory

code segment logical/physical address

Instruction "MOV AL,57" has a machine code of B057.
B0 is the opcode and 57 is the operand.
The byte at address 1132:0100 contains B0, the opcode for moving
a value into register AL.
Address 1132:0101 contains the operand to be moved to AL.

data segment

• Assume a program to add 5 bytes of data, such as 25H, 12H, 15H, 1FH, and 2BH.
– One way to add them is as follows:

– In the program above, the data & code are mixed together in
the instructions.

• If the data changes, the code must be searched for every place it is
included, and the data retyped

• From this arose the idea of an area of memory strictly for data

data segment

• In x86 microprocessors, the area of memory set aside for
data is called the data segment.
– The data segment uses register DS and an offset value.
– DEBUG assumes that all numbers are in hex.

• No "H" suffix is required.
– MASM assumes that they are in decimal.

• The "H" must be included for hex data.
• The next program demonstrates how data can

be stored in the data segment and the program
rewritten so that it can be used for any set of data.

data segment

• Assume data segment offset begins at 200H.
– The data is placed in memory locations:

– The program can be rewritten as follows:

data segment

• The offset address is enclosed in brackets, which indicate that the
operand represents the address of the data and not the data itself.

– If the brackets were not included, as in
"MOV AL,0200", the CPU would attempt to move 200 into AL
instead of the contents of offset address 200. decimal.

• This program will run with any set of data.
• Changing the data has no effect on the code.

data segment

• If the data had to be stored at a different offset address the
program would have to be rewritten
– A way to solve this problem is to use a register to hold

the offset address, and before each ADD, increment the
register to access the next byte.

• 8088/86 allows only the use of registers BX, SI,
and DI as offset registers for the data segment
– The term pointer is often used for a register holding

an offset address.

data segment
• In the following example, BX is used as a pointer:

• The INC instruction adds 1 to (increments) its operand.
– "INC BX" achieves the same result as "ADD BX,1“
– If the offset address where data is located is changed, only one

instruction will need to be modified.

data segment logical/physical address

data segment logical/physical address

extra segment (ES)

• ES is a segment register used as an extra data segment.
– In many normal programs this segment is not used.
– Use is essential for string operations.

64

16 bit Segment Register Assignments

Type of
Memory
Reference

Default
Segment

Alternate
Segment

Offset

Instruction
Fetch

CS none IP

Stack
Operations

SS none SP,BP

General Data DS CS,ES,SS BX, address

String Source DS CS,ES,SS SI, DI, address

String
Destination

ES None DI

Brey

65

Little Endian Convention

• Adobe Photoshop -- Big Endian
• BMP (Windows and OS/2 Bitmaps) – little Endian
• GIF -- Little Endian
• IMG (GEM Raster) -- Big Endian
• JPEG -- Big Endian

“Little Endian” means that the low-order byte of the
number is stored in memory at the lowest address, and the
high-order byte at the highest address. (The little end
comes first.)
Intel uses Little Endian Convention.
For example, a 4 byte LongInt

Byte3 | Byte2 | Byte1 |Byte0 will be arranged in memory
as follows:
Base Address+0 Byte0
Base Address+1 Byte1
Base Address+2 Byte2
Base Address+3 Byte3

little endian convention
• Previous examples used 8-bit or 1-byte data.

– What happens when 16-bit data is used?

• The low byte goes to the low memory location and the high
byte goes to the high memory address.
– Memory location DS:1500 contains F3H.
– Memory location DS:1501 contains 35H.

• (DS:1500 = F3 DS:1501 = 35)
– This convention is called little endian vs big endian.

• From a Gulliver’s Travels story about how an egg should
be opened—from the little end, or the big end.

little endian convention

• In the big endian method, the high byte goes to the low address.
– In the little endian method, the high byte goes to the

high address and the low byte to the low address.

what is a stack? why is it needed?

• The stack is a section of read/write memory (RAM) used by the CPU to
store information temporarily.

– The CPU needs this storage area since there are
only a limited number of registers.

• There must be some place for the CPU to store
information safely and temporarily.

• The main disadvantage of the stack is access time.
– Since the stack is in RAM, it takes much longer to

access compared to the access time of registers.
• Some very powerful (expensive) computers do not have a stack.

– The CPU has a large number of registers to work with.

how stacks are accessed

• The stack is a section of RAM, so there must be registers inside the CPU to
point to it.

– The SS (stack segment) register.
– The SP (stack pointer) register.

• These registers must be loaded before any
instructions accessing the stack are used.

• Every register inside the x86 can be stored in the stack, and brought back
into the CPU from the
stack memory, except segment registers and SP.

– Storing a CPU register in the stack is called a push.
– Loading the contents of the stack into the CPU register

is called a pop.

how stacks are accessed
• The x86 stack pointer register (SP) points at the current memory location used

as the top of the stack.
– As data is pushed onto the stack it is decremented.
– As data is popped off the stack into the CPU, it is incremented.

• When an instruction pushes or pops a general-purpose register, it must be the
entire 16-bit register.

– One must code "PUSH AX".
• There are no instructions such as "PUSH AL" or "PUSH AH".

how stacks are accessed
• The SP is decremented after the push is to make sure the stack is

growing downward from upper addresses to lower addresses.
– The opposite of the IP. (instruction pointer)

• To ensure the code section & stack section of the program never
write over each other, they are
located at opposite ends of the RAM set aside
for the program.
– They grow toward each other but must not meet.

• If they meet, the program will crash.

pushing onto the stack
• As each PUSH is executed, the register contents are saved on the stack and SP is

decremented by 2.

pushing onto the stack
• For every byte of data saved on the stack, SP is decremented once.

Since the push
is saving the
contents of a
16-bit register,
it decrements
twice.

pushing onto the stack
• In the x86, the lower byte is always stored in the memory location with the lower

address.

24H, the content
of AH, is saved
in the memory
location with the
address 1235.
AL is stored in
location 1234.

popping the stack
• With every pop, the top 2 bytes of the stack are copied to the x86 CPU register

specified by the instruction & the stack pointer is incremented twice.

While the data
actually remains
in memory, it is
not accessible,
since the stack
pointer, SP is
beyond that point.

logical vs physical stack address
• The exact physical location of the stack depends on the value of the stack

segment (SS) register and
SP, the stack pointer.

– To compute physical addresses for the stack, shift
left SS, then add offset SP, the stack pointer register.

– Usually Windows O/S assigns values for the SP and SS.

a few more words about x86 segments
• Can a single physical address belong to many different logical

addresses?
– Observe the physical address value of 15020H.

• Many possible logical addresses represent this single
physical address:

– An illustration of the dynamic behavior of the segment and
offset concept in the 8086 CPU.

a few more words about x86 segments

• When adding the offset to the shifted segment register results in an address
beyond the maximum allowed range of FFFFFH, wrap-around will occur.

overlapping

• In calculating the physical address, it is possible that two segments can
overlap.

